### Finding and treating Gaucher Disease Type 1 The role of the haematologist

Cappellini M-D, Cassinerio E, Motta I, et al. Eur Oncol & Haematol 2018;14(1):50-56.

# Only 20 % of haematologists consider Gaucher Disease type 1 in their differential diagnosis for patients presenting with splenomegaly and/or thrombocytopenia<sup>1</sup>

#### **Gaucher disease (GD)**

- Is a rare, autosomal recessive disorder caused by mutations in the *GBA* gene.<sup>1</sup> More than 330 mutations have been identified to date, all of which result in reduced levels of the enzyme, ß-glucocerebrosidase, which in healthy individuals hydrolyses the glycolipid, glucocerebroside to glucose and ceramide.<sup>1</sup>
- Is characterised by an accumulation of glucosylceramide and glucosylsphingosine in macrophages and other reticuloendothelial cells, leading to the formation of 'Gaucher cells'.<sup>1</sup>These lipid-laden cells gradually infiltrate the spleen, liver, kidneys, lung, brain and/or bone marrow causing progressive and heterogeneous disease.<sup>1</sup>
- Is the most common type of lysosomal storage disease (LSD), with an estimated prevalence if 1/75 000 births among the general population, rising to 1/600 births in Ashkenazi Jews.<sup>1</sup>
- Encompasses a continuum of phenotypes, ranging from a perinatal lethal form (type 2) to a mild or asymptomatic adult form (type 1).<sup>1</sup>

#### Gaucher disease type 1

- Is the most common and mildest form of the disorder.<sup>1</sup>
- Presents with haematological complications, including spontaneous bruising/bleeding due to thrombocytopenia and/or GD-associated coagulopathy, abdominal discomfort/ swelling due to splenomegaly and/or chronic fatigue due to anaemia.<sup>1</sup>
  Hepatomegaly and abnormal liver function, increased susceptibility to infection due to suboptimal neutrophil function and neutropenia, pulmonary disease, bone pain and (in children) growth retardation and/or delayed puberty may also be present.<sup>1</sup>
- Is usually distinguished from type 2 and 3 GD by the absence of neurological symptoms, such as convulsions, hypertonia, mental retardation, apnoea, slow saccades and/or dementia.<sup>1</sup>
- Long-term complications include pulmonary hypertension, haematological malignancies (leukaemia, multiple myeloma and lymphoma) and – less frequently – solid cancers.<sup>1</sup> Skeletal disorders due to bone marrow infiltration (e.g. pathological fractures, osteolytic lesions and osteonecrosis) are common.<sup>1</sup>

In general, patients with GD type 1 who remain untreated survive through to adulthood.<sup>1</sup>

#### The importance of an early diagnosis

- The usual treatment for GD type 1 is enzyme replacement therapy (ERT).<sup>1</sup>
- Prompt treatment with ERT can prevent or reverse many of the clinical features associated with GD type 1, thereby improving quality of life.<sup>1</sup>
- In addition to enabling effective management strategies, a prompt diagnosis of GD enables early screening of at-risk relatives and timely provision of genetic counselling for affected individuals and their families.<sup>1</sup>

## Despite the importance of early symptom management, people with GD often experience considerable diagnostic delays.<sup>1</sup>

#### **Diagnostic clues**

- Approximately 60 % of patients with GD type 1 have thrombocytopenia at diagnosis and 86 % (and 95 % of children) have splenomegaly.<sup>1</sup>
- Suspicion of GD should be further raised by the presence of hepatomegaly, fatigue (sometimes related to anaemia), leukopenia, bone pain/disease, growth retardation and/ or delayed puberty.<sup>1</sup>

#### Diagnostic tests *ß-glucosidase activity tests*

- A definitive diagnosis of GD can be obtained by measuring ß-glucosidase activity in peripheral blood leucocytes (normal range: 2.1-5.3 µmol/l/h).<sup>1</sup> However, this assay is only conducted at specialised centres and, as a result, the ß-glucosidase test may not be performed during the initial visit.<sup>1</sup>
- To accelerate the diagnostic process, non-invasive dried blood spot (DBS) assays have been developed for screening ß-glucosidase activity.<sup>1</sup> Positive results must be followed up with the traditional assay.<sup>1</sup>

#### **Mutation analysis**

• Molecular screening for common *GBA1* mutations is a reliable test for Ashkenazi Jews and other individuals who are at high risk for GD.<sup>1</sup>

#### Bone marrow biopsy

• Bone marrow biopsy is useful for distinguishing haematological malignancy from GD.<sup>1</sup>

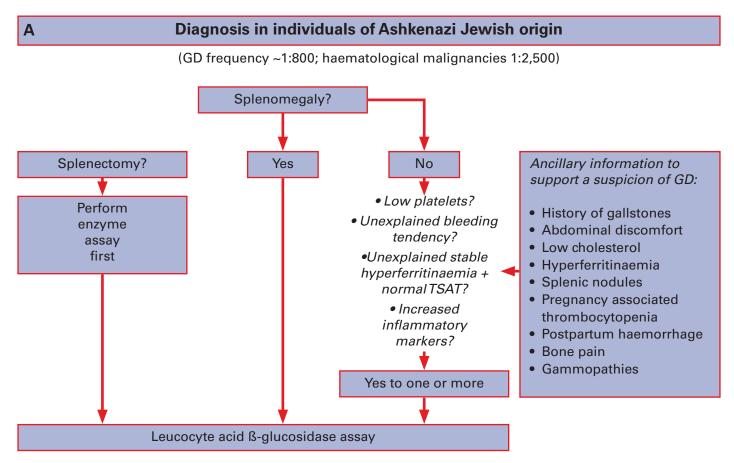
#### **Biochemical markers**

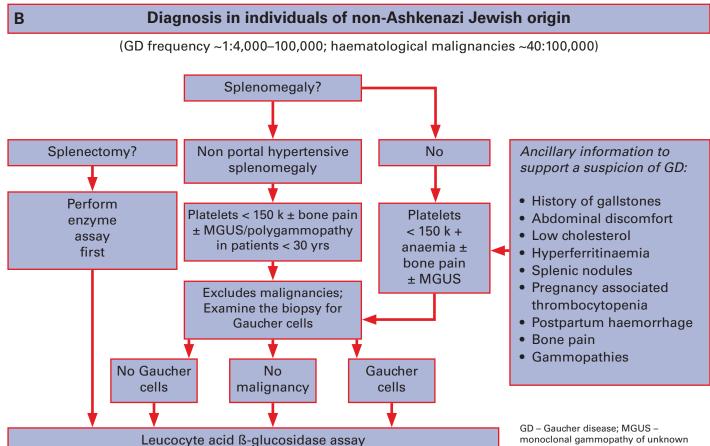
- Abnormal levels of one or more biochemical markers (Table 1) are suggestive of GD, but similar changes can be caused by other disorders.<sup>1</sup>
- The most reliable and specific biomarker for GD is glucosylsphingosine (lyso-GL1).<sup>1</sup>

Table 1. Common laboratory markers in Gaucher disease<sup>1</sup>

| Elevated                          | Decreased                                                |
|-----------------------------------|----------------------------------------------------------|
| Glucosylsphingosine (lyso-GL1)    | Clotting factors                                         |
| Chitotriosidase                   | Vitamin B12                                              |
| CCL18                             | Total cholesterol                                        |
| ACE                               | Platelet count (sometimes below 20 x 10 <sup>9</sup> /l) |
| TRAP                              |                                                          |
| Ferritin                          |                                                          |
| Lysozyme                          |                                                          |
| Polyclonal gammopathy and/or MGUS |                                                          |

ACE = angiotensin-converting enzyme; CCL18 = chemokine (C-C motif) ligand; MGUS = monogammopathy of unknown significance; TRAP = tartrate-resistant acid phosphatase.


#### Algorithms for the diagnosis of GD type 1 Gaucher disease diagnosis in adults

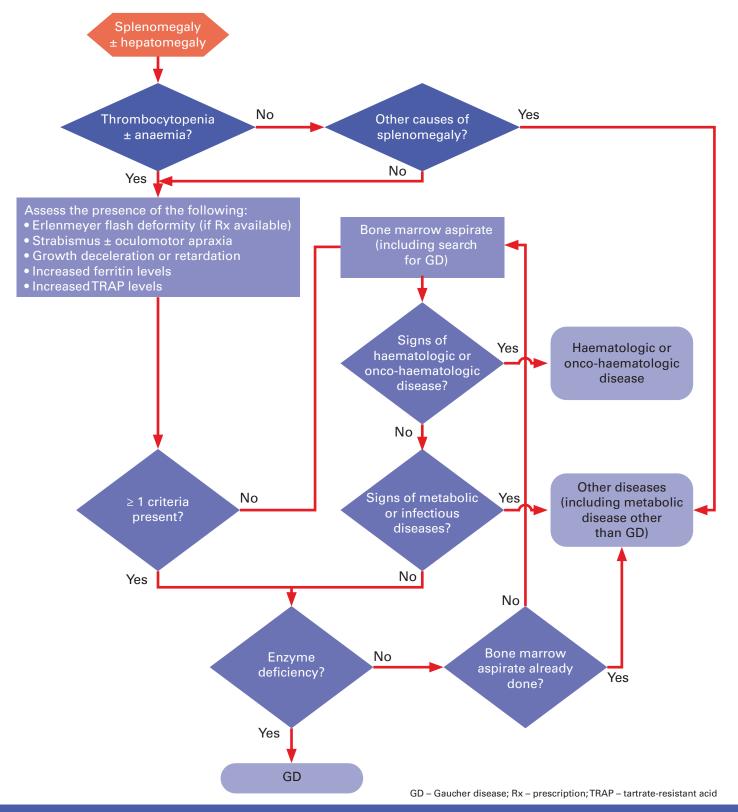

- Given the incidence of GD type 1 versus haematological malignancy in the Ashkenazi Jewish population, algorithms for the diagnosis of GD in adults suggest that ß-glucosidase activity should be routinely assessed in all high-risk individuals with thrombocytopenia and splenomegaly (Figure 1A).<sup>1</sup>
- In people not descended from Ashkenazi Jews, splenomegaly is more likely to be caused by haematological malignancy than by GD.<sup>1</sup> In these patients, it is reasonable to perform a bone marrow biopsy before GD is considered to rule out malignancy and other conditions associated with splenomegaly (Figure 1B).<sup>1</sup> When interpreting biopsy results, it is important to remember that malignancy and GD sometimes co-exist.<sup>1</sup>

Although splenectomy is indicated for a number of conditions associated with splenomegaly, it tends to worsen the clinical course of GD in the liver, skeleton and the lungs.<sup>1</sup>

Consequently, GD must be excluded in all patients being considered for splenectomy.<sup>1</sup>

**Figure 1.** Algorithm for the diagnosis of Gaucher disease in A: adults descended from Ashkenazi Jews and B: adults not descended from Ashkenazi Jews<sup>1</sup>






monoclonal gammopathy of unknown significance; TSAT – transferrin saturation

#### Gaucher disease diagnosis in children/young adults

- Algorithms for the diagnosis of GD (type 1 and 3) in children/young adults propose that GD should be considered in all children with unexplained splenomegaly, with or without thrombocytopenia, anaemia and/or hepatomegaly (Figure 2).<sup>1</sup>
- Where possible, GD should be confirmed using a ß-glucosidase assay, thereby avoiding unnecessary emotional trauma and/or bleeding that may be caused by bone marrow biopsy or liver biopsy.<sup>1</sup>

Figure 2. Algorithm for the diagnosis of Gaucher disease in the paediatric population<sup>1</sup>



#### **Summary**

- Early diagnosis and prompt management of GD has the potential to reduce the risk of long-term GD complications while reversing many of the initial signs/symptoms.<sup>1</sup>
- Most patients with GD have unexplained splenomegaly and/or thrombocytopenia, and many present during childhood.<sup>1</sup> Consequently, most initial referrals are to haematologists and/or paediatricians.<sup>1</sup>
- Simple diagnostic algorithms and screening tools have been developed and validated, both in adults and in children.<sup>1</sup>

Reference: 1. Cappellini M-D, Cassinerio E, Motta I, et al. Finding and treating Gaucher disease type 1 – The role of the haematologist. Eur Oncol & Haematol 2018;14(1):50-56.

sanofi-aventis south africa (pty) ltd., Reg. no.: 1996/010381/07, Floor 5, Building I, Hertford Office Park, 90 Bekker Road, Midrand, 2196. Tel: (011) 256 3700. MAT-ZA-2101135-2.0-02/2023

